Review of Z-pinch driven fusion and high energy density physics applications (2024)

[1]

Deeney C, Douglas M R, Spielman R B. Enhancement of X-ray power from a Z pinch using nested-wire arrays[J]. Physical Review Letters, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883

[2]

Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Reviews of Modern Physics, 2000, 72(1): 167-223. doi: 10.1103/RevModPhys.72.167

[3]

Cuneo M E, Vesey R A, Porter J L, et al. Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept[J]. Physics of Plasmas, 2001, 8(5): 2257-2267. doi: 10.1063/1.1348328

[4]

Sanford T W L, Nash T J, Mock R C, et al. Evidence and mechanisms of axial-radiation asymmetry in dynamic hohlraums driven by wire-array Z pinches[J]. Physics of Plasmas, 2005, 12: 022701. doi: 10.1063/1.1850479

[5]

Cuneo M E, Vesey R A, Porter J L, et al. Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions[J]. Physical Review Letters, 2002, 88: 215004. doi: 10.1103/PhysRevLett.88.215004

[6]

slu*tz S A, Vesey R A, Herrmann M C. Compensation for time-dependent radiation-drive asymmetries in inertial-fusion capsules[J]. Physical Review Letters, 2007, 99: 175001. doi: 10.1103/PhysRevLett.99.175001

[7]

Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49: B591-B600. doi: 10.1088/0741-3335/49/12B/S55

[8]

slu*tz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505

[9]

Gomez M R, slu*tz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003

[10]

Bailey J E, Nagayama T, Loisel G P, et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures[J]. Nature, 2014, 517(1): 56-59.

[11]

Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755

[12]

Lebedev S V, Frank A, Ryutov D D. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities[J]. Reviews of Modern Physics, 2019, 91: 025002. doi: 10.1103/RevModPhys.91.025002

[13]

Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J]. Science, 2015, 348: 1455-1460. doi: 10.1126/science.aaa7471

[14]

Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1: 48-58. doi: 10.1016/j.mre.2016.01.004

[15]

Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire Array Z-pinch and dynamic holhraum in the IAPCM[J]. Matter and Radiation at Extremes, 2016, 1: 135-152. doi: 10.1016/j.mre.2016.06.001

[16]

Xu Rongkun, Li Zhenghong, Yang Jianlun, et al. Study of tungsten wire array Z-pinch implosion on Qiang-Guang I facility[J]. Chinese Physics B, 2005, 14(8): 1613-1617. doi: 10.1088/1009-1963/14/8/026

[17]

Zhu Xinlei, Zou Xiaobing, Zhang Ran, et al. X-ray backlighting of the initial stage of single and multiwire Z-pinch[J]. IEEE Trans on Plasma Science, 2012, 40(12): 3329-3333. doi: 10.1109/TPS.2012.2218622

[18]

Wang Liangping, Li Mo, Han Juanjuan. Conversion of electromagnetic energy in Z-pinch processes of single planar wire arrays at 1.5MA[J]. Physics of Plasmas, 2014, 21(6): 062706. doi: 10.1063/1.4882876

[19]

Wu Jian, Lu Yihan, Sun Fengju, et al. Preconditioned wire array Z-pinches driven by a double pulse current generator[J]. Plasma Physics and Controlled Fusion, 2018, 60: 075014. doi: 10.1088/1361-6587/aac4fe

[20]

Vesey R A, Herrmann M C, Lemke R W, et al. Target design for high fusion yield with the double Z-pinch-driven hohlraum[J]. Physics of Plasmas, 2007, 14: 056302. doi: 10.1063/1.2472364

[21]

Olson R E, Leeper R J, Batha S H, et al. Pulsed power indirect drive approach to inertial confinement fusion[J]. High Energy Density Physics, 2020, 36: 100749.

[22]

Stygar W A, Ives H C, Fehl D L, et al. X-ray emission from Z pinches at 10<sup>7</sup> A: Current scaling, gap closure, and shot-to-shot fluctuations[J]. Physical Review E, 2004, 69: 046403. doi: 10.1103/PhysRevE.69.046403

[23]

Mazarakis M G, Cuneo M E, Stygar W A, et al. X-ray emission current scaling experiments for compact single-tungsten-wire arrays at 80-nanosecond implosion times[J]. Physical Review E, 2009, 79: 016412. doi: 10.1103/PhysRevE.79.016412

[24]

Mehlhorn T A, Bailey J E, Bennett G, et al. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies[J]. Plasma Physics and Controlled Fusion, 2003, 45: A325-A334. doi: 10.1088/0741-3335/45/12A/021

[25]

slu*tz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587

[26]

Xiao Delong, Sun Shunkai, Zhao Yingkui, et al. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums[J]. Physics of Plasmas, 2015, 22: 052709. doi: 10.1063/1.4921332

[27]

Ruiz C L, Cooper G W, slu*tz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001

[28]

slu*tz S A, Olson C L, Peterson P. Low mass recyclable transmission lines for Z-pinch driven inertial fusion[J]. Physics of Plasmas, 2003, 10(2): 429-437. doi: 10.1063/1.1533789

[29]

肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203. (Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203

[30]

Xiao Delong, Ye Fan, Meng Shijian, et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Physics of Plasmas, 2017, 24: 092701. doi: 10.1063/1.4994331

[31]

Meng Shijian, Hu Qingyuan, Nin Jiaming, et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Physics of Plasmas, 2017, 24: 014505. doi: 10.1063/1.4974771

[32]

Ye Fan, Xiao Delong, Meng Shijian, et al. Investigation on the main characteristics of dynamic hohlraum formation on the Julong-1 facility[J]. submitted to Physics of Plasmas.

[33]

slu*tz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003

[34]

Sinars D B, slu*tz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA 100-ns Z facility[J]. Physical Review Letters, 2010, 105: 185001. doi: 10.1103/PhysRevLett.105.185001

[35]

Sinars D B, slu*tz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J]. Physics of Plasmas, 2011, 18: 056301. doi: 10.1063/1.3560911

[36]

McBride R D, slu*tz S A, Jennings C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J]. Physical Review Letters, 2012, 109: 135004. doi: 10.1103/PhysRevLett.109.135004

[37]

McBride R D, Martin M R, Lemke R W, et al. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J]. Physics of Plasmas, 2013, 20: 056309. doi: 10.1063/1.4803079

[38]

Peterson K J, Sinars D B, Yu E P, et al. Electrothermal instability growth in magnetically driven pulsed power liners[J]. Physics of Plasmas, 2012, 19: 092701. doi: 10.1063/1.4751868

[39]

Peterson K J, Yu E P, Sinars D B, et al. Simulations of electrothermal instability growth in solid aluminum rods[J]. Physics of Plasmas, 2013, 20: 056305. doi: 10.1063/1.4802836

[40]

Peterson K J, Awe T J, Yu E P, et al. Electrothermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors[J]. Physical Review Letters, 2014, 112: 135002. doi: 10.1103/PhysRevLett.112.135002

[41]

Awe T J, McBride R D, Jennings C A, et al. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field[J]. Physical Review Letters, 2013, 111: 235005. doi: 10.1103/PhysRevLett.111.235005

[42]

Awe T J, Jennings C A, McBride R D, et al. Modified helix-like instability structure on imploding Z-pinch liners that are preimposed with a uniform axial magnetic field[J]. Physics of Plasmas, 2014, 21: 056303. doi: 10.1063/1.4872331

[43]

Wang Guanqiong, Xiao Delong, Wang Xiaoguang, et al. Effect of external axial magnetic field on the early stage instabilities in magnetized cylindrical liners[J]. Physics of Plasmas, 2019, 26: 112704. doi: 10.1063/1.5121596

[44]

Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203

[45]

Wang Xiaoguang, Sun Shunkai, Xiao Delong, et al. Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the Primary Test Stand[J]. Chinese Physics B, 2019, 28: 035201. doi: 10.1088/1674-1056/28/3/035201

[46]

Harvey-Thompson A J, Weis M R, Harding E C, et al. Diagnosing and mitigating laser preheat induced mix in MagLIF[J]. Physics of Plasmas, 2018, 25: 112705. doi: 10.1063/1.5050931

[47]

Harvey-Thompson A J, Geissel M, Jennings C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Physics of Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044

[48]

Peterson K. Progress in preconditioning MagLIF fuel and its impact on performance[R]. SAND2017-6187PE, 2017.

[49]

slu*tz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Physics of Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317

[50]

slu*tz S A, Jennings C A, Awe T J, et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Physics of Plasmas, 2017, 24: 012704. doi: 10.1063/1.4973551

[51]

Shipley G A, Awe T J, Hutsel B T, et al. Implosion of auto-magnetizing helical liners on the Z facility[J]. Physics of Plasmas, 2019, 26: 052705. doi: 10.1063/1.5089468

[52]

Knapp P F, Gomez M R, Hansen S B, et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Physics of Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548

[53]

Hansen S B, Gomez M R, Sefkow A B, et al. Diagnosing magnetized liner inertial fusion experiments on Z[J]. Physics of Plasmas, 2015, 22: 056313. doi: 10.1063/1.4921217

[54]

Gomez M. Performance scaling with drive parameters in Magnetized Liner Inertial Fusion experiments[C]//61st Annual Meeting of the APS Division of Plasma Physics. 2019.

[55]

Ampleford D J, Jones D J, Jennings C A, et al. Contrasting physics in wire array Z pinch sources of 1-20 keV emission on the Z facility[J]. Physics of Plasmas, 2014, 21: 056708. doi: 10.1063/1.4876621

[56]

Ampleford D J, Hansen S B, Jennings C A, et al. Opacity and gradients in aluminum wire array Z-pinch implosions on the Z pulsed power facility[J]. Physics of Plasmas, 2014, 21: 031201. doi: 10.1063/1.4865224

[57]

Peterson R R, Peterson D L, Watt R G, et al. Blast wave radiation source measurement experiments on the Z Z-pinch facility[J]. Physics of Plasmas, 2006, 13: 056901. doi: 10.1063/1.2186050

[58]

Chrien R E, Matuska W, Idzorek Jr. G, et al Measurement and simulation of apertures on Z hohlraums[J]. Review of Scientific Instruments, 1999, 70(1): 557-560. doi: 10.1063/1.1149354

[59]

李沫, 王亮平. Z 箍缩软X 射线辐射能量薄膜量热计改进技术[J]. 强激光与粒子束, 2013, 25(8):2142-2146. (Li Mo, Wang Liangping. Improvement on resistive bolometer for measuring total soft X-ray yield generated by Z-pinches[J]. High Power Laser and Particle Beams, 2013, 25(8): 2142-2146 doi: 10.3788/HPLPB20132508.2142

[60]

盛亮, 李阳, 袁媛, 等. 表面绝缘铝平面丝阵Z箍缩实验研究[J]. 物理学报, 2014, 63:055201. (Sheng Liang, Li Yang, Yuan Yuan, et al. Experimental study of insulated aluminum planar wire array Z pinches[J]. Acta Physica Sinica, 2014, 63: 055201 doi: 10.7498/aps.63.055201

[61]

Bailey J E, Rochau G A, Iglesias C A, et al. Iron-plasma transmission measurements at temperatures above 150 eV[J]. Physical Review Letters, 2008, 99: 265002.

[62]

Bailey J E, Rochau G A, Mancini R C, et al. Diagnosis of X-ray heated Mg/Fe opacity research plasmas[J]. Review of Scientific Instruments, 2008, 79: 113104. doi: 10.1063/1.3020710

[63]

Flicker D G, Benage J F, Desjarlais M P, et al. Sandia dynamic materials program strategic plan[R]. SAND2017-4664R, 2017.

[64]

Asay J R, Hall C A, Konard C H, et al. Use of Z-pinch sources for high pressure equation-of-state studies[J]. International Journal of Impact Engineering, 1999, 23: 27-38. doi: 10.1016/S0734-743X(99)00059-7

[65]

Lemke R W, Knudson M D, Davis J-P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38: 480-485. doi: 10.1016/j.ijimpeng.2010.10.019

[66]

Cochrane K R, Lemke R W, Riford Z, et al. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper[J]. Journal of Applied Physics, 2016, 119: 105902. doi: 10.1063/1.4943417

[67]

Knudson M D, Desjarlais M P, Dolan D H. Shock-wave exploration of the high-pressure phases of carbon[J]. Science, 2008, 322: 1822-1825. doi: 10.1126/science.1165278

[68]

Davis J-P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. Journal of Applied Physics, 2014, 116: 204903. doi: 10.1063/1.4902863

[69]

Brown J L, Alexander C S, Asay J R, et al. Flow strength of tantalum under ramp compression to 250 GPa[J]. Journal of Applied Physics, 2014, 115: 043530. doi: 10.1063/1.4863463

[70]

王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展[J]. 物理学报, 2014, 63:196201. (Wang Guilin, Guo Shuai, Shen Zhaowu, et al. Recent advances in hyper-velocity flyer launch experiments on PTS[J]. Acta Physica Sinica, 2014, 63: 196201 doi: 10.7498/aps.63.196201

[71]

郭帅, 王贵林, 张朝晖, 等. 聚龙一号准等熵压缩实验负载优化研究[J]. 强激光与粒子束, 2016, 28:015015. (Guo Shuai, Wang Guilin, Zhang Zhaohui, et al. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Paticle Beams, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015

[72]

王贵林, 张朝晖, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线测量实验研究[J]. 强激光与粒子束, 2016, 28:055010. (Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental measurement of quasi-isentrope for copper on PTS[J]. High Power Laser and Paticle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010

[73]

Bennett M J, Lebedev S V, Hall G N, et al. Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory[J]. High Energy Density Physics, 2015, 17: 63-67. doi: 10.1016/j.hedp.2015.02.001

[74]

Coverdale C A, Deeney C, Velikovich, et al. Neutron production and implosion characteristics of a deuterium gas-puff Z pinch[J]. Physics of Plasmas, 2007, 14: 022706. doi: 10.1063/1.2446177

[75]

Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Physical Review Special Topics–Accelerators and Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401

[76]

Grabovski E V. Wire array investigation on Angara-5-1 and Baikal Project[C]//IEEE Pulsed Power & Plasma Science. 2013.

[77]

彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201. (Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.11884/HPLPB201426.090201

Review of Z-pinch driven fusion and high energy density physics applications (2024)
Top Articles
Craigslist Free Stuff Gainesville Florida
Ucsd Summer Courses
Pollen Count Centreville Va
Umbc Baseball Camp
Forozdz
The UPS Store | Ship & Print Here > 400 West Broadway
Limp Home Mode Maximum Derate
Mcoc Immunity Chart July 2022
Craigslist Vermillion South Dakota
Joe Gorga Zodiac Sign
When Is the Best Time To Buy an RV?
Weather In Moon Township 10 Days
123Moviescloud
MindWare : Customer Reviews : Hocus Pocus Magic Show Kit
Missing 2023 Showtimes Near Landmark Cinemas Peoria
Colts Snap Counts
Paychex Pricing And Fees (2024 Guide)
1-833-955-4522
Roll Out Gutter Extensions Lowe's
Tamilyogi Proxy
Craigslist Pet Phoenix
Christina Steele And Nathaniel Hadley Novel
18889183540
Dwc Qme Database
Qual o significado log out?
Tripadvisor Napa Restaurants
Soul Eater Resonance Wavelength Tier List
Lacey Costco Gas Price
Black Panther 2 Showtimes Near Epic Theatres Of Palm Coast
Srjc.book Store
Bj's Tires Near Me
Www Craigslist Com Shreveport Louisiana
Hypixel Skyblock Dyes
CARLY Thank You Notes
Nacho Libre Baptized Gif
Leatherwall Ll Classifieds
Boone County Sheriff 700 Report
Fifty Shades Of Gray 123Movies
Sallisaw Bin Store
Television Archive News Search Service
Portal Pacjenta LUX MED
Tacos Diego Hugoton Ks
Noga Funeral Home Obituaries
Mcoc Black Panther
40X100 Barndominium Floor Plans With Shop
A Man Called Otto Showtimes Near Cinemark Greeley Mall
Iron Drop Cafe
Naomi Soraya Zelda
Ewwwww Gif
Lux Funeral New Braunfels
Cheryl Mchenry Retirement
Pauline Frommer's Paris 2007 (Pauline Frommer Guides) - SILO.PUB
Latest Posts
Article information

Author: Madonna Wisozk

Last Updated:

Views: 6622

Rating: 4.8 / 5 (48 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Madonna Wisozk

Birthday: 2001-02-23

Address: 656 Gerhold Summit, Sidneyberg, FL 78179-2512

Phone: +6742282696652

Job: Customer Banking Liaison

Hobby: Flower arranging, Yo-yoing, Tai chi, Rowing, Macrame, Urban exploration, Knife making

Introduction: My name is Madonna Wisozk, I am a attractive, healthy, thoughtful, faithful, open, vivacious, zany person who loves writing and wants to share my knowledge and understanding with you.